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» Special Relativity: Speed ofi light ¢ Is
e the same, no matter how: fast you move

Conseqguences

— moving clocks tick more slowly
— moving objects' length become squished
— relativistic effects greatest if moving near c

General Relativity:
e Einstein's great insight: The opposite holds true!
* Gravity: Massive objects

- Slow down time & squish space around them,
leading to permanent acceleration field
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Theony ofi General Relativity

s ASSUMES specialrelatvity s true; /i aaailien:

e A gravitationall acceleration Is the same as a nermal acceleration:
“Equivalence Principle”

- Curving space, and
- Slowing down time



Theony offGeneral" Relativity:
Summary.

» Glravity CUIVES SPaCce & SIOWS down
time SN

e Clocks on greund tick more slowly.
than these In hot air balleon

» Meter sticks standing en ground are
shorter than these in hot air balloon® — 4.

+ Path of light bends when traveling. ws
around massive object v
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e |nfermation about changing gravitational fields propagates
Infinitely fast

* General Relativity:
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 Newtonian Gravity:

e |nfermation about changing gravitational fields propagates
Infinitely fast

* General Relativity:

 |nformation about changing gravitational fields propagates at
c, results in gravitational waves

e Binary system:
- Gravitational waves carry away orbital energy & angular momentum




Predictions;ofsGeneraliRelativity/:
GlhavitationalVWWaVves
o Strongest waves from objects orbiting nhear ¢
e Black holes & neutron stars; Sun-like — destroyed
 These waves detectable, but extremely weak!
e LIGO: About 1/1000 width of proton
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Livingston, Louisiana (L1)
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20, 045008 (2012} What remains to be seen?
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DIINOUS
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What other systems
result in a BH+disk?







Detectable by LIGO!












SHOIYNGIRIS

o

NG
\“" ‘;l!\

\CH

\‘“g

\




ShortiGammea=Ray Bursts

* Found In regions thought rich in NSs & BHs

s Host galaxy populatiedioy elder starns
- — Mest massive stars long dead, leaving behimnd NSs and BiHS

NS G

NS NS




Observationally consistent!

! But what do our best theoretical
models say?




Basic Equations

GR Newtonian

Equations for gravitational field
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Basic Equations

GR Newtonian

Equations for gravitational field
= 2
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Basic Equations

Missing Physics:
Proper magnetosphere modeling
(Ideal MHD egs. become stiff iIn magnetospheres)
Neutrinos (no cooling)
Photons (ho spectra)
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Basic Equations

Missing Physics:

Proper magnetosphere modeling
Ideal MHD egs. become stiff iIn magnetospheres

Neutrinos (no cooling)
Photons (ho spectra)
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GiRaFEE =

General Relativistic Force-Eree Electrodynamics ‘

R,

s Gravitational waves (GWWSs) dive black heles and
Reutren stars te) nspiral and merge

/

e — EXtenor magnetic fields change rapidly

e — Possible EMI counterpart to; GW: signal

e Such EM coeunterparts could yield deep insights inte
these extreme objects

e But we need firmer theoretical foundation for modeling
them

 GIRaFFE: Solves equations of general relativistic
force-free electrodynamics (GRFFE), needed to
realistically model such counterparts



GIRaEEE
REsuIts: Simple
pulsar moede)

Starting withrinitial' dipole
field, magnetic field lines
(blue) open at the!light
cylinder (X/R_LC = 1), due
(o rotation of magnetized
star (yellow)




Basic Equations

Missing Physics:
Proper magnetosphere modeling
(Ideal MHD egs. become stiff iIn magnetospheres)
Neutrinos (no cooling)
Photons (ho spectra)

Why not add everything how?

g Short answer: Current simulations are
extremely computationally expensive, and
CPUs are not getting faster

(Moore's Law has ended)
— Can't add new physics without greatly
Improving efficiency
The future lies in developing more
efficient algorithms
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Near-Spherical
Object

* Highest res needed
in radial dirn, need
1/3—1/10 points in
angular directions
Cost:
Nr*Ntheta*Nphi ~
1/100 Nr®— 1/10 Nr®
Cartesian grid:
need dx=dy=dz=dr.
Cost:

NX*Ny*Nz ~ Nr®

So far, spherical
polar grid ~ 10-100x
more efficient than
Cartesian

2l R

uimeijca




Near-Spherical ' What about dr
- along diagonal?

Object

* Highest res needed

 Cube diagonal =

In radial dirn, need
1/3—1/10 points in
angular directions
Cost:
Nr*Ntheta*Nphi ~
1/100 Nr®— 1/10 Nr*
Cartesian grid:
need dx=dy=dz=dr.
Cost:

NX*Ny*Nz ~ Nr®

So far, spherical
polar grid ~ 10-100x
more efficient than
Cartesian

V3*sidelength - to
get dr resolution in
all directions, need
to reduce dx,dy,dz
by /3

Since cost in
memory ~1/dx?,
“fitting the round
peg in a square
hole” increases
cost by another
factor of (V3)*~5x!
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Near-Spherical
Object

. What about dr
- along diagonal?

* Highest res needed
In radial dirn, need
1/3—1/10 points in
angular directions
Cost:
Nr*Ntheta*Nphi ~
1/100 Nr®—1/10 Nr’

» Cartesian grid:
need dx=dy=dz=dr.
Cost:

NX*Ny*Nz ~ Nr®

» So far, spherical
polar grid ~ 10-100x
more efficient than
Cartesian

 Cube diagonal =
V3*sidelength - to
get dr resolution in
all directions, need
to reduce dx,dy,dz
by /3

e Since cost In
memory ~1/dx?,
“fitting the round
peg in a square
hole” increases
cost by another
factor of (V3)*~5x!

Inefficiencies so far:
~50-500x
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ANR BoXx
Boundary Is a
Cube...
. but fields fall ofii
radially!
— region outside
orange C]J‘LJ 2 IS
OVer-resolved by 2x
Total velume of
DVer-resolved
region = 8-4/3' pl ~
3.6 = about half the
cube!
SO We gain by
about another
factor of 1.9x.

AMR Box side-

length = 2
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NIMcnec

ANIR B0OX
Boundarny isia
Cube...
.. DUt fields fall off
radially!
~ liegion outside
orange C]J‘LJ 2 IS

OVer-resolved by 2x
Total volume of
pVer-resolved

region = 8-4/3' pl ~
3.8 = about halfi th
cube!

SO We gain by
about another
factor or 1.9x.

AMR Box side-

length = 2

Inefficiencies so far:

~100-1,000x




Adaptive Mesh Refinement
(Most Popular Method in NR)

Information must be interpolated
dclross refinement boundaries:
Interpolation — grids must overlap
Overiap regions (grey) can take up
50% of oeverall computational' demain!




EXiSt In

FRelativity (INR)'SImulations

ICIENCIES

Enormousilnett

ANMR

1Ca

Numer

ds must overlap

ion — gri
(grey) can take up

» Information must be interpolated
across refinement boundaries.

 [nterpolat

10NS

50% of overall computational domain!

Overlap reg
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ANIR BOX
Boundary Is a
Cune...

. but fields fall ofii
f:iLJ JJ/J
~legion out
orange circle
OVer-resolved by 2x

Total velume of
DVer-resolved
region = 8-4/3' pl ~
3.6 = about half the
cube!

S0 We gain by
about another
factor of 1.9x.

Inefficiencies:

~200-2,000x

— Enormous
numMper of ghost
zones at refinement
pounadaries!

Jf]J.)E Z0ones can
take up 50%  ofi
pverall
computational
gomaint!
Bispherical
coordinate 5/555111:
Gain anoether ~2x




|deaalViove torSphencal Polar
Coordinates!

Cartesian o — Spherical Polar
Coordinates: [ — Coordinates:

Recent
breakthroughs
address stability
Issues!

Bauméjarte_ et.-'éil'.' , Phys. Rev. bl;'87,___04"4026 (2012)
e_arXiv:1211.6632°



Idea: Move.to,Spherical'Polar
Coordinates!

Fully Explicit Runge-Kutta

0.0320

0.025

0.020
—

0.015

0,010

0.005

0.000 L

0

Coordinate singularities lead to instabilities in traditional
numerical schemes (e.g., 1+1 spherical scalar wave in RK2)




Idea: Move. to:Spherical Polar
Coordinates!

Fartially Implicit Runge-Kutta

... but new algorithms handle singular terms and stabilize the
numerics, even when solving Einstein's equations
(E.g., Baumgarte et al's 3+1 BSSN In Spherical Polar Coords,
PhysRevD.87.044026)



1CaA

NewGoals feor NUmer

Ity

ICal

1Y/

Relat

te; Ssystems

|flel

[e0)0)f0

aynani

trany

» Handleranh

lanties

ngu

th coorainate’s

Wi

s EVen those

s 200—2

deskiop!

Corotating

SUpPErcomputer—

000X speea-up,

Magnified,

L®]
Q
=
e}
Q
7]
o
=
o}
o
o
=
0
]
©
=
o
ol
o
o
O
w
()]
e
3
et
O
-
3
(A
m
T




SENR: A Super-Efficient Numerical,Relativity/Code
for the Agelol Gravitational WWaverAstrophysics

Zachariah B. Etienne
lan Ruchlin

In collaboration with

Thomas W. Baumgarte

TwoPunctures Coordinates: Uncompactified, Magnified, Corotating
2




SENRIDesIghrPhiliosophy

OpenSeurce; Open Development —~ Greaie AU OPHN

o hitpi/itinyurl:com/senrcode

Algorithmic Simplicity: > Moere SCIENCe EASter:

« Easier to debug & extend
 Build on tried & true algorithms

- BSSNiin Spherical Polar Coords techniques pioneered by T.
Baumgarte et al

« SENR: Extend Ideas to support arbitrary, dynamical coords
Memory Efficiency Is Key Focus: Unlock the Desktop

e Get public involved — ~10,000x more GW throughput!

Bottom line: Maximize science with minimal human & computational
resources




SENRsResults:
CEonvergence: torexact solution;
even for blackiholes!

Simulating black
hole without
excision:

on)

Numerical errors
converge to zero
exponentially with
Increased
polynomial
approximation order!
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Finite Difference Order




Stummary.

Eleciremagnenc counterparts ter gravitational wave
ERSenvatoens ane likely!

Enermoeus iImprovements will be: necessany o
AUumerncal relativity: to: maximize the science from

SuUch observations

The GIRaFEFE & SENR' (Super Efficient Numerical
Relativity) codes aim to be big steps in this direction

Stay tuned on our progress:
http://tinyurl.com/senrcode
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